Organization

• Condition surveys
 ‒ Data collection
• Automated surveys
• Highway agency trends with automated data collection
• Data quality
Condition Surveys

- Assess existing condition
- Predict future condition
- Estimate budget needs
- Evaluate budget impacts
- Support asset management
- Project selection
- Treatment selection
Data Collection

- Manual Walking & Windshield
- Semi-Automated
- Fully Automated
What Do We Collect

Data Collection

AASHTO / ASTM Standards

Rutting

Faulting

- Cross slope
- Radius of curvature
- Grade

Roughness
What Do We Collect (continued)

LTPP

DISTRESS IDENTIFICATION MANUAL for the Long-Term Pavement Performance Program

ASTM

Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys

NWPMA/WSDOT

Pavement Surface Condition RATING MANUAL

Northwest Pavement Management Systems Users Group
Sponsored by:
WSDOT, FHWA, Washington State University,
Washington DOT, University of Washington, University of Idaho, Oregon DOT, others

The information contained in this document is subject to copyright and all rights are reserved by the author. No part of this document may be reproduced in any form without the written permission of the author.
Automated Data Collection

The chart shows the number of agencies reporting data over different years:

- **IRI**: 49 in 1986, 51 in 1991, 2 in 2004
- **Faulting**: 23 in 1986, 23 in 1991, 33 in 2004
- **Distress**: 10 in 1986, 20 in 1991, 33 in 2004
2D Systems

- Area or **line-scan** camera
 - Captures laser beam reflection
 - Software generates surface image
- Surface distress determined by:
 - Human rater viewing images or
 - Analysis software

~13 ft ~6 ft
3D Systems

- High resolution 2D and 3D continuous profile
- Software & algorithms to detect:
 - Cracking (>1mm)
 - Raveling
 - Potholes
3D Systems (continued)

Source: Pavemetrics Systems, Inc.
2D Intensity Data (reflected light)

3D Range Data (height)

Source: F. Li (Georgia Tech)
3D Systems (continued)

3D Laser Image

Automated Crack Detection

Source: Dynatest, Inc.
How good is 3D?

• Need precise and clear distress definitions
• Algorithm accuracy is critical
• Compare to manual surveys
 – Laurent et al. (2014) evaluated 6,200 mi, 96% good agreement in crack type, multiple runs very repeatable
 – TxDOT (2014) evaluated 20 different sections, similar distress values
Example of Results
Advantages/Disadvantages

Advantages
- Safety
- Accuracy for certain distresses
- Faster data collection and processing
- Track distress over time
- Asset data collection

Disadvantages
- Link to historical manual distress data
- Changing technology
- Higher cost
- Potential vendor variability
- May required modification to distress manual, decision trees, models, etc.
Trends in Automated Data Collection (2018 survey)
Collection/Analysis Methods

- Full and Semi-Automated: 21 agencies
- Fully Automated: 16 agencies
- Combo of All: 8 agencies
- Manual: 6 agencies
Who does what?

- Vendor Collects/Analysis: 16 agencies
- Agency Collect/Analysis: 16 agencies
- Both: 6 agencies
- Vendor Collects - Agency Analysis: 5 agencies
- Vendor Collects - Both Analysis: 3 agencies
- Both Collect - Agency Analysis: 2 agencies

No. of Agencies
What’s collected?

Asphalt Pavements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fully Automated</th>
<th>Semi-Automated</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRI</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Rutting</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Longitudinal cracking</td>
<td>33</td>
<td>9</td>
</tr>
<tr>
<td>Transverse cracking</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>Cross slope</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Alligator cracking</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>Texture</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Edge cracking</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Reflection cracking</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Block cracking</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Raveling</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Potholes</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Bleeding</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Patching</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

No. of Agencies
Jointed Plain Concrete Pavements

What's collected (continued)?

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fully Automated</th>
<th>Semi-Automated</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRI</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Faulting</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Long. Crack</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Cross slope</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Tran. Crack</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Texture</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Patching</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Spalling</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Corner Crack</td>
<td>16</td>
<td>7</td>
</tr>
</tbody>
</table>

No. of Agencies
Data Quality

- DOTs required to have data quality management plan (FAST Act)
 - Equipment calibration & certification
 - Certification process for manual data collection
 - Quality control
 - Sample, review & check processes
 - Error resolution procedures
 - Data acceptance criteria
Process Overview

Standards
- Equipment
- Rater

Control Site
- Ground truth
- Automated
- Compare for accuracy & repeatability

Production
- Verification sites
- Quality control (collection team)

Data Processing
- Acceptance (collection team)

Independent Verification
- Sampling
- Data checks
- Image quality

Agency Acceptance
- Data checks
- Image quality
- Compare to previous results

PMS
- Data load
- Additional functional checks
Standards

Distress
- Agency
- ASTM D6433
- LTPP

Profile (equipment)
- AASHTO M 328
- AASHTO R 56
- AASHTO R 57

Profile (measure)
- AASHTO PP 70
- ASTM E950
- ASTM E1656
- ASTM E2133

Roughness
- AASHTO R 43
- AASHTO PP 37
- ASTM E1926
- ASTM E1489

Faulting
- AASHTO R 36

Rutting / Deformation
- AASHTO PP 38
- AASHTO PP 69
- AASHTO R 48
- ASTM E1703

Asphalt Cracking
- AASHTO PP 67
- AASHTO R 55

Images
- AASHTO PP 68

Macrotexture
- ASTM E1845

Precision & Bias
- ASTM C670
- ASTM C802
Monitoring Sites

- **Control**
 - Conducted by agency
 - Establish ground truth
 - Certify, calibrate, verify equipment
 - Rater training and certification
 - Located proximity to central office

- **Verification**
 - Conducted by agency
 - Spread across network
 - Location known by collection team
 - Can be traversed multiple times during collection

- **Blind**
 - Same as verification
 - Location unknown to collection team
Rater Certification

• Agency-specific distress definitions

• Training
 - Conducted by agency or vendor
 - Identify and recognize agency distress

• Certification
 - Must be done by agency
Quality Control (examples)

• Equipment calibration & certification
 - Profiler
 - Distance measuring instrument
 - Linear referencing system

• Location
 - Match agency

• Data completeness
 - Length
 - Number of sections
 - Blank or null values

• Distress/condition
 - Expected range
 - Pavement type

• Images
 - Quality
 - Confirm distress
QC Detail Examples

- **Profiler**
 - Repeatability ± 5% (three runs)
 - Accuracy ± 10% of agency value
 - Bound test ≤ 8in/mi
 - Block check ± 0.1in

- **Imagery focus, color, luminance quality**

- **Location** ≤ 30 ft

- **IRI (3 runs):**
 - Std ≤ 0.06 in/mi and
 - ± 0.06 in. agency

- **Rut (3 runs):**
 - Std ≤ 0.06 in. and
 - ± 0.06 in agency

- **Fault (multiple runs and historical avg):**
 - Std ≤ 15%
Example of Control, Verification, and Blind Site Requirements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Criteria (3 runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRI</td>
<td>Std ± 5% Class 1 profiler</td>
</tr>
<tr>
<td>Rutting</td>
<td>Std ± 0.06 in Class 1 profiler</td>
</tr>
<tr>
<td>Faulting</td>
<td>Std ± 0.06 in manual survey</td>
</tr>
<tr>
<td>Distress</td>
<td>± 10% manual survey</td>
</tr>
</tbody>
</table>
| Images | • Displayable and clear, continuous, correctly stitched with no missing or overlapping images, synchronized with geographic locations and associated attributes
• ≤ 10 images/mi or ≤ 2 consecutive images/mi with poor quality
• 1/8 in. wide cracks are visible |
Example of Acceptance Requirements

• 100% data & image completeness
• Conduct field verification (5-10% sample)
 - Verify images & results
 - IRI: >95% ± 10% agency value
 - Rut: >95% ± 0.06 in. agency value
 - Fault: >95% ± 0.06 in. agency value
 - Cracking >85% ± 10% agency value
Example of Acceptance Requirements (continued)

• Location: >95% ± 30 ft
• Downward and ROW images > 95% meet criteria
• Confirm 100% data upload to PMS
• Major rehabilitation segment > 85% of segments ± 10% area agency value
• Year-to-year consistency checks
Example of Corrective Action

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Acceptance</th>
<th>Testing</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data completeness</td>
<td>> 98%</td>
<td>Total network miles</td>
<td>Re-collect</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>Delivered data accurately populated</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>> 98%</td>
<td>Accurately populated with required data elements</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>> 98%</td>
<td>Delivered data < 10 consecutive fixed missing segments</td>
<td>Correct</td>
</tr>
<tr>
<td>IRI, rut depth, & faulting</td>
<td>> 95%</td>
<td>Compliant with the verification testing requirements</td>
<td>Re-collect</td>
</tr>
<tr>
<td>Distress ratings</td>
<td>> 95%</td>
<td>Compliant with the verification testing requirements</td>
<td>Re-collect</td>
</tr>
<tr>
<td>Location Information</td>
<td>100%</td>
<td>Database check of accuracy and completeness</td>
<td>Correct</td>
</tr>
<tr>
<td>Photolog & pavement images</td>
<td>100%</td>
<td>20% random sample compliant with verification requirements</td>
<td>Re-collect</td>
</tr>
</tbody>
</table>
National Research

- NCHRP Synthesis (Spring 2019)
- NCHRP 1-57A (July 2019)
 - Standard definitions for automated cracking data
- NCHRP 1-60 (December 2021)
 - Calibration, certification, and verification of imaging systems
National Research (continued)

- FHWA Pooled Fund
 - Improving quality of distress and profile data collection and analysis
 - Standard data format
 - Transverse profile verif/valid/calib protocols
 - Cracking assessment protocols
 - Faulting collection and analysis standards
 - Quality management guide

https://www.pooledfund.org/Details/Study/543
Summary

Data Collection

Data Quality

Pavement Management
Questions?

Linda Pierce
lpierce@ncenet.com
(505) 603-7993